Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT We present spectra of the supernova (SN) impostor AT 2016blu spanning over a decade. This transient exhibits quasi-periodic outbursts with an $$\sim$$113 d period, likely triggered by periastron encounters in an eccentric binary system where the primary star is a luminous blue variable (LBV). The overall spectrum remains fairly consistent during quiescence and eruptions, with subtle changes in line-profile shapes and other details. Some narrow emission features indicate contamination from a nearby H ii region in the host galaxy, NGC 4559. Broader H $$\alpha$$ profiles exhibit Lorentzian shapes with full width at half-maximum intensity (FWHM) values that vary significantly, showing no correlation with photometric outbursts or the 113 d phase. At some epochs, H $$\alpha$$ exhibits asymmetric profiles with a stronger redshifted wing, while broad and sometimes multicomponent P Cygni absorption features occasionally appear, but are again uncorrelated with brightness or phase. These P Cygni absorptions have high velocities compared to the FWHM of the H $$\alpha$$ emission line, perhaps suggesting that the absorption component is not in the LBV’s wind, but is instead associated with a companion. The lack of phase dependence in line-profile changes may point to interaction between a companion and a variable or inhomogeneous primary wind, in an orbit with only mild eccentricity. Recent photometric data indicate that AT 2016blu experienced its 21st outburst around 2023 May/June, as predicted based on its period. This type of quasi-periodic LBV remains poorly understood, but its spectra and erratic light curve resemble some pre-SN outbursts such as those of SN 2009ip.more » « less
-
Abstract We present Hubble Space Telescope (HST) imaging of the site of SN 2015bh in the nearby spiral galaxy NGC 2770 taken between 2017 and 2019, nearly four years after the peak of the explosion. In 2017–2018, the transient fades steadily in optical filters before declining more slowly toF814W= −7.1 mag in 2019, ≈4 mag below the level of its eruptive luminous blue variable (LBV) progenitor observed with HST in 2008–2009. The source fades at a constant color ofF555W−F814W= 0.4 mag until 2018, similar to SN 2009ip and consistent with a spectrum dominated by interaction of the ejecta with circumstellar material (CSM). A deep optical spectrum obtained in 2021 lacks signatures of ongoing interaction (LHα≲ 1038erg s−1for broadened emission ≲2000 km s−1), but indicates the presence of a nearby Hiiregion (≲300 pc). The color evolution of the fading source makes it unlikely that emission from a scattered-light echo or binary OB companion of the progenitor contributes significantly to the flattening of the late-time light curve. The remaining emission in 2019 may plausibly be attributed an evolved/inflated companion or an unresolved (≲3 pc), young stellar cluster. Importantly, the color evolution of SN 2015bh rules out scenarios in which the surviving progenitor is obscured by nascent dust and does not clearly indicate a transition to a hotter, optically faint state. The simplest explanation is that the massive progenitor did not survive. SN 2015bh likely represents a remarkable example of the terminal explosion of a massive star preceded by decades of end-stage eruptive variability.more » « less
-
Abstract We present photometric and spectroscopic observations of the extraordinary gamma-ray burst (GRB) 221009A in search of an associated supernova. Some past GRBs have shown bumps in the optical light curve that coincide with the emergence of supernova spectral features, but we do not detect any significant light-curve features in GRB 221009A, nor do we detect any clear sign of supernova spectral features. Using two well-studied GRB-associated supernovae (SN 2013dx, SN 2016jca, ) at a similar redshift as GRB 221009A (z= 0.151), we modeled how the emergence of a supernova would affect the light curve. If we assume the GRB afterglow to decay at the same rate as the X-ray data, the combination of afterglow and a supernova component is fainter than the observed GRB brightness. For the case where we assume the best-fit power law to the optical data as the GRB afterglow component, a supernova contribution should have created a clear bump in the light curve, assuming only extinction from the Milky Way. If we assume a higher extinction ofE(B−V) = 1.74 mag (as has been suggested elsewhere), the supernova contribution would have been hard to detect, with a limit on the associated supernova of 19.54. We do not observe any clear supernova features in our spectra, which were taken around the time of expected maximum light. The lack of a bright supernova associated with GRB 221009A may indicate that the energy from the explosion is mostly concentrated in the jet, leaving a lower energy budget available for the supernova.more » « less
An official website of the United States government
